翻訳と辞書
Words near each other
・ Schwind
・ Schwind eye tech solutions
・ Schwindegg
・ Schwindratzheim
・ Schwingbach
・ Schwinge (Elbe)
・ Schwinge (Peene)
・ Schwingen
・ Schwinger
・ Schwinger function
・ Schwinger limit
・ Schwinger magnetic induction
・ Schwinger model
・ Schwinger parametrization
・ Schwinger variational principle
Schwinger's quantum action principle
・ Schwinger–Dyson equation
・ Schwingesperrwerk
・ Schwingt freudig euch empor, BWV 36
・ Schwingt freudig euch empor, BWV 36c
・ Schwingungen
・ Schwinkendorf
・ Schwinn Bicycle Company
・ Schwinn Racer
・ Schwinn Twinn
・ Schwippe
・ Schwirzheim
・ Schwissel
・ Schwob
・ Schwoben


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schwinger's quantum action principle : ウィキペディア英語版
Schwinger's quantum action principle

Schwinger's quantum action principle is a variational approach to quantum field theory introduced by Julian Schwinger. In this approach, the quantum action is an operator. Although it is superficially different from the path integral formulation where the action is a classical function, the modern formulation of
the two formalisms are identical.
Suppose we have two states defined by the values of a complete set of commuting operators at two times. Let the early and late states be | A \rang and | B \rang, respectively. Suppose that there is a parameter in the Lagrangian which can be varied, usually a source for a field. The main equation of Schwinger's quantum action principle is:
: \delta \langle B|A\rangle = i \langle B| \delta S |A\rangle,\
where the derivative is with respect to small changes in the parameter.
In the path integral formulation, the transition amplitude is represented by the sum
over all histories of \exp(iS), with appropriate boundary conditions representing the states | A \rang and | B \rang. The infinitesimal change in the amplitude is clearly given by Schwinger's formula. Conversely, starting from Schwinger's formula, it is easy to show that the fields obey canonical commutation relations and the classical equations
of motion, and so have a path integral representation. Schwinger's formulation was most significant because it could treat fermionic anticommuting fields with the same formalism as bose fields, thus implicitly introducing differentiation and integration
with respect to anti-commuting coordinates.
==External links==

*() A brief (but very technical) description of Schwinger's paper


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schwinger's quantum action principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.